The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model
نویسندگان
چکیده
BACKGROUND Chronic stress contributes to the development of brain disorders, such as neurodegenerative and psychiatric diseases. Oxidative damage is well known as a causative factor for pathogenic process in brain tissues. The aim of this study is to evaluate the neuroprotective effect of a 30% ethanol extract of Aquilariae Lignum (ALE) in repeated stress-induced hippocampal oxidative injury. METHODS Fifty BALB/c male mice (12 weeks old) were randomly divided into five groups (n = 10). For 11 consecutive days, each group was orally administered with distilled water, ALE (20 or 80 mg/kg) or N-acetylcysteine (NAC; 100 mg/kg), and then all mice (except unstressed group) were subjected to restraint stress for 6 h. On the final day, brain tissues and sera were isolated, and stress hormones and hippocampal oxidative alterations were examined. We also treated lipopolysaccharide (LPS, 1 μg/mL)-stimulated BV2 microglial cells with ALE (1 and 5 μg/mL) or NAC (10 μM) to investigate the pharmacological mechanism. RESULTS Restraint stress considerably increased the serum levels of corticosterone and adrenaline and the hippocampal levels of reactive oxygen species (ROS), nitric oxide (NO), and malondialdehyde (MDA). ALE administration significantly attenuated the above abnormalities. ALE also significantly normalized the stress-induced activation of astrocytes and microglial cells in the hippocampus as well as the elevation of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). The in vitro assay outcome supplemented ALE could dramatically block NF-κB activation in microglia. The anti-oxidative stress effects of ALE were supported by the results of antioxidant components, 4-hydroxynonenal (4-HNE), NADPH oxidase 2 (NOX2), inducible nitric oxide synthase (iNOS) and NFE2L2 (Nrf2) in the hippocampal tissues. CONCLUSIONS We firstly demonstrated the neuroprotective potentials of A. Lignum against hippocampal oxidative injury in repeated restraint stress. The corresponding mechanisms might involve modulations in the release of ROS, pro-inflammatory cytokines and stress hormones.
منابع مشابه
Morin Hydrate ameliorates Chronic Restraint Stress-Induced Biochemical Disruption, Neuronal and Behavioral Dysfunctions in BALB/c Mice
Background: Morin hydrate (MH) is a bioflavonoid component of many fruits and vegetables. Our previous investigations demonstrated that MH confer neuroprotection in mouse models of acute restraint stress and sleep deprivation by attenuating hippocampal neuronal damage and enhancing memory. Based on these findings, our study investigated the role of MH in chronic stress-induced neuronal and bioc...
متن کاملSpinacia oleracea L. extract attenuates hippocampal expression of TNF-α and IL-1β in rats exposed to chronic restraint stress
Background: Restraint stress causes inflammation in nervous system that leads to emersion of neurodegenerative diseases. Spinach (Spinacia oleracea L.) contains different agents with antioxidant, antiapoptosis, and hepatoprotective properties. This study examined the effect of spinach hydroalcoholic extract (SHE) on TNF-α and IL-1β expression in hippocampus of male Wistar rats exposed to chroni...
متن کاملThe Effect of Olive Leaf Methanolic Extract on Hippocampal Antioxidant Biomarkers in an Animal Model of Parkinson’s Disease
Background and Objective: Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by damages to striatal dopaminergic neurons that affects 1 to 2% of the population above 65 years of age. Olive leaf extract (OLE) is a powerful antioxidant that is considered as a source of various phenolic compounds. This study was conducted to evaluate the effects of methanolic OLE on hipp...
متن کاملThe effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کاملThe effect of prenatal restraint stress on the number and size of neurons in the rat hippocampal subdivisions
Animal studies have shown that prenatal stress is able to induce long-lasting neurobiological and behavioral alterations in adult offspring. In spite of the facts that hippocampus is sensitive to early developmental influences and its known functional importance in learning and memory, few data are available on the effect of prenatal stress on the structure of hippocampus. Therefore, this study...
متن کامل